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Quantum mechanics is, at least at first glance and at least in part,
a mathematical machine for predicting the behaviors of
microscopic particles — or, at least, of the measuring instruments
we use to explore those behaviors — and in that capacity, it is
spectacularly successful: in terms of power and precision, head
and shoulders above any theory we have ever had.
Mathematically, the theory is well understood; we know what its
parts are, how they are put together, and why, in the mechanical sense (i.e., in a sense that can
be answered by describing the internal grinding of gear against gear), the whole thing performs
the way it does, how the information that gets fed in at one end is converted into what comes
out the other. The question of what kind of a world it describes, however, is controversial; there is
very little agreement, among physicists and among philosophers, about what the world is /ike
according to gquantum mechanics. Minimally interpreted, the theory describes a set of facts about
the way the microscopic world impinges on the macroscopic one, how it affects our measuring
instruments, described in everyday language or the language of classical mechanics.
Disagreement centers on the question of what a microscopic world, which affects our
apparatuses in the prescribed manner, is, or even could be, like intrinsically, or how those

apparatuses could themselves be built out of microscopic parts of the sort the theory describes. 1!

That is what an interpretation of the theory would provide: a proper account of what the world is
like according to quantum mechanics, intrinsically and from the bottom up. The problems with
giving an interpretation (not just a comforting, homey sort of interpretation, i.e., not just an
interpretation according to which the world isn’t too different from the familiar world of common
sense, but any interpretation at all) are dealt with in other sections of this encyclopedia. Here, we
are concerned only with the mathematical heart of the theory, the theory in its capacity as a
mathematical machine, and — whatever is true of the rest of it — this part of the theory makes
exquisitely good sense.
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1. Terminology

Physical systems are divided into types according to their unchanging (or ‘state-independent’)
properties, and the state of a system at a time consists of a complete specification of those of its
properties that change with time (its ‘state-dependent’ properties). To give a complete description
of a system, then, we need to say what type of system it is and what its state is at each moment
in its history.

A physical quantity is a mutually exclusive and jointly exhaustive family of physical properties (for
those who know this way of talking, it is a family of properties with the structure of the cells in a
partition). Knowing what kinds of values a quantity takes can tell us a great deal about the
relations among the properties of which it is composed. The values of a bivalent quantity, for
instance, form a set with two members; the values of a real-valued quantity form a set with the
structure of the real numbers. This is a special case of something we will see again and again, viz,,
that knowing what kind of mathematical objects represent the elements in some set (here, the
values of a physical quantity; later, the states that a system can assume, or the quantities
pertaining to it) tells us a very great deal (indeed, arguably, all there is to know) about the
relations among them.

In guantum mechanical contexts, the term ‘observable’ is used interchangeably with ‘physical
quantity’, and should be treated as a technical term with the same meaning. It is no accident that
the early developers of the theory chose the term, but the choice was made for reasons that are
not, nowadays, generally accepted. The state-space of a system is the space formed by the set of
its possible states,[Z] i.e., the physically possible ways of combining the values of quantities that
characterize it internally. In classical theories, a set of quantities which forms a supervenience
basis for the rest is typically designated as ‘basic’ or fundamental’, and, since any mathematically
possible way of combining their values is a physical possibility, the state-space can be obtained by
simply taking these as coordinates. 3! So, for instance, the state-space of a classical mechanical
system composed of n particles, obtained by specifying the values of 6n real-valued quantities —
three components of position, and three of momentum for each particle in the system —is a 6n-
dimensional coordinate space. Each possible state of such a system corresponds to a point in the
space, and each point in the space corresponds to a possible state of such a system. The situation
is a little different in quantum mechanics, where there are mathematically describable ways of
combining the values of the quantities that don’t represent physically possible states. As we will
see, the state-spaces of quantum mechanics are special kinds of vector spaces, known as Hilbert
spaces, and they have more internal structure than their classical counterparts.

A structure is a set of elements on which certain operations and relations are defined, a
mathematical structure is just a structure in which the elements are mathematical objects
(numbers, sets, vectors) and the operations mathematical ones, and a model is a mathematical
structure used to represent some physically significant structure in the world.

The heart and soul of quantum mechanics is contained in the Hilbert spaces that represent the
state-spaces of quantum mechanical systems. The internal relations among states and quantities,
and everything this entails about the ways quantum mechanical systems behave, are all woven
into the structure of these spaces, embodied in the relations among the mathematical objects
which represent them.[4] This means that understanding what a system is like according to
guantum mechanics is inseparable from familiarity with the internal structure of those spaces.
Know your way around Hilbert space, and become familiar with the dynamical laws that describe
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the paths that vectors travel through it, and you know everything there is to know, in the terms
provided by the theory, about the systems that it describes.

By ‘know your way around’ Hilbert space, | mean something more than possess a description or a
map of it; anybody who has a quantum mechanics textbook on their shelf has that. | mean know
your way around it in the way you know your way around the city in which you live. This is a
practical kind of knowledge that comes in degrees and it is best acquired by learning to solve
problems of the form: How do | get from A to B? Can | get there without passing through C? And
what is the shortest route? Graduate students in physics spend long years gaining familiarity with
the nooks and crannies of Hilbert space, locating familiar landmarks, treading its beaten paths,
learning where secret passages and dead ends lie, and developing a sense of the overall lay of the
land. They learn how to navigate Hilbert space in the way a cab driver learns to navigate his city.

How much of this kind of knowledge is needed to approach the philosophical problems
associated with the theory? In the beginning, not very much: just the most general facts about
the geometry of the landscape (which is, in any case, unlike that of most cities, beautifully
organized), and the paths that (the vectors representing the states of) systems travel through
them. That is what will be introduced here: first a bit of easy math, and then, in a nutshell, the
theory.

2. Mathematics

2.1 Vectors and vector spaces

A vector A, written ‘| A)’, is a mathematical object characterized by a length, |A|, and a direction.
A normalized vector is a vector of length 1; i.e., |A| = 1. Vectors can be added together,

multiplied by constants (including complex numbers), and multiplied together. Vector addition
maps any pair of vectors onto another vector, specifically, the one you get by moving the second
vector so that its tail coincides with the tip of the first, without altering the length or direction of
either, and then joining the tail of the first to the tip of the second. This addition rule is known as
the parallelogram law. So, for example, adding vectors |A) and | B) yields vector

|C)(=|A) + |B)) as in Figure 1:

IB>

|A> 1A> IC>

IB>

FIGURE 1. Vector Addition

Multiplying a vector |A) by n, where n is a constant, gives a vector which is the same direction as
|A) but whose length is n times |A)’s length.

In a real vector space, the (inner or dot) product of a pair of vectors |4) and | B), written ‘(A | B)’

is a scalar equal to the product of their lengths (or ‘norms’) times the cosine of the angle, 6,
between them:



(A| B) = |A||B| cosf

Let |A;) and |A2) be vectors of length 1 (“unit vectors”) such that (4; | A3) = 0. (So the angle

between these two unit vectors must be 90 degrees.) Then we can represent any two-
dimensional vector | B) in terms of our unit vectors as follows:

|B) = b1|A1) + b2| A2)

For example, here is a graph which shows how |B) can be represented as the sum of the two unit
vectors |A;) and |As):

IB> = by IA> + b, |A>

|A1>

 —_ —

FiGURE 2. Representing |B) by Vector Addition of Unit Vectors

Now the definition of the inner product (A | B) has to be modified to apply to complex spaces.
Let ¢* be the complex conjugate of ¢. (When ¢ is a complex number of the form a + b3, then the

complex conjugate ¢* of cis defined as follows:

l[a+bi]* =a—bi

l[a — bi]* =a+ bi
So, for all complex numbers ¢, [¢*]* = ¢, but ¢* = ¢ just in case c is real.) Now definition of the
inner product of |A) and | B) for complex spaces can be given in terms of the conjugates of

complex coefficients as follows. Where |A;) and |As) are the unit vectors described earlier,
‘A> = al\A1> + CL2|A2> and |B> = b1|A1> + b2|A2>, then

(A| B) = (a1)(b1) + (a3)(b2)



The most general and abstract notion of an inner product, of which we’ve now defined two
special cases, is as follows. (A | B) is an inner product on a vector space V just in case

i (A| A) =]|A]* and (A]| A) =0ifandonlyif A =0
i (B| A)=(A|B)*
i (B|A+C)=(B|A)+(B|C).

It follows from this that

i. the length of |A) is the square root of inner product of |4) with itself, i.e.,
Al = /(A ] A)

and
ii. |A) and |B) are mutually perpendicular, or orthogonal, if, and only if, (A | B).

A vector space is a set of vectors closed under addition, and multiplication by constants, an inner
product space is a vector space on which the operation of vector multiplication has been defined,
and the dimension of such a space is the maximum number of nonzero, mutually orthogonal
vectors it contains.

Any collection of N mutually orthogonal vectors of length 1 in an N-dimensional vector space
constitutes an orthonormal basis for that space. Let |A1), ..., |An) be such a collection of unit

vectors. Then every vector in the space can be expressed as a sum of the form:
‘B> = b1‘A1> + b2‘A2> + ...+ bN|AN>,
where b; = (B | A;). The b;’s here are known as B’s expansion coefficients in the A-basis 1]

Notice that:

i. for all vectors A, B, and C'in a given space,
(A|B+C)=(A|B)+(A|C)
ii. for any vectors M and @, expressed in terms of the A-basis,

M) + Q) Z<mz+qz)\A>

and

(M| Q)= quz

There is another way of writing vectors, namely by writing their expansion coefficients (relative to
a given basis) in a column, like so:
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Q=2

q2

where ¢; = (Q | A;) and the A; are the chosen basis vectors.

When we are dealing with vector spaces of infinite dimension, since we can’t write the whole
column of expansion coefficients needed to pick out a vector since it would have to be infinitely
long, so instead we write down the function (called the ‘wave function’ for @, usually represented
¥(4)) which has those coefficients as values. We write down, that is, the function:

P(i) = ¢ = (Q | 4i)

Given any vector in, and any basis for, a vector space, we can obtain the wave-function of the
vector in that basis; and given a wave-function for a vector, in a particular basis, we can construct
the vector whose wave-function it is. Since it turns out that most of the important operations on
vectors correspond to simple algebraic operations on their wave-functions, this is the usual way to
represent state-vectors.

When a pair of physical systems interact, they form a composite system, and, in quantum
mechanics as in classical mechanics, there is a rule for constructing the state-space of a composite
system from those of its components, a rule that tells us how to obtain, from the state-spaces,

H 4 and Hp for A and B, respectively, the state-space — called the ‘tensor product’ of H4 and
Hpg, and written H4 ® Hp — of the pair. There are two important things about the rule; first, so
long as H4 and Hp are Hilbert spaces, H4 ® Hp will be as well, and second, there are some facts
about the way H4 ® Hp relates to H4 and Hp, that have surprising conseqguences for the
relations between the complex system and its parts. In particular, it turns out that the state of a
composite system is not uniquely defined by those of its components. \What this means, or at least
what it appears to mean, is that there are, according to quantum mechanics, facts about
composite systems (and not just facts about their spatial configuration) that don’t supervene on
facts about their components; it means that there are facts about systems as wholes that don’t
supervene on facts about their parts and the way those parts are arranged in space. The
significance of this feature of the theory cannot be overplayed; it is, in one way or another,
implicated in most of its most difficult problems.

In a little more detail: if {v} is an orthonormal basis for H 4 and {uf’} is an orthonormal basis for
Hpg, then the set of pairs (vf, uf) is taken to form an orthonormal basis for the tensor product
space Hy ® Hp. The notation v ® uf is used for the pair (v, u?),
H, ® Hg is defined as: 6]

and inner product on

(vf @up [ vl @uf) = (v | vi) (up | uy)
It is a result of this construction that although every vectorin H4 ® Hp is a linear sum of vectors

expressible in the form v ® uB, not every vector in the space is itself expressible in that form,
and it turns out that

i. any composite state defines uniquely the states of its components.
i. if the states of A and B are pure (i.e., representable by vectors v and u®, respectively),
then the state of (A + B) is pure and represented by vA ®uP and
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iii. if the state of (A + B) is pure and expressible in the form v# ® u®, then the states of A and
B are pure, but

iv. if the states of A and B are not pure, i.e., if they are mixed states (these are defined below),
they do not uniquely define the state of (A + B); in particular, it may be a pure state not

expressible in the form v4 ® u®.
2.2 Operators

An operator O is a mapping of a vector space onto itself; it takes any vector | B) in a space onto
another vector | B') also in the space; O|B) = |B’). Linear operators are operators that have the
following properties:

i O(JA) + |B)) = O|A) + O|B). and
i. O(c|A)) = c(0|A)).

Just as any vector in an N-dimensional space can be represented by a column of N numbers,
relative to a choice of basis for the space, any linear operator on the space can be represented in
a column notation by N2 numbers:
@) @)
O — [ 11 12}

021 022

where O;; = (4; | O | A;) and the An are the basis vectors of the space. The effect of the linear
operator O on the vector B is, then, given by

O11 Oqp b
OlB) = [O21 022] * {bz}
- [(01161 + 01252)]
B (O21b1 + O2by)
= (O11b1 + O12b2)| A1) + (O21b1 + Ogbs| Az)
= |B')

Two more definitions before we can say what Hilbert spaces are, and then we can turn to
gquantum mechanics. |B) is an eigenvector of O with eigenvalue a if, and only if, O|B) = a|B).
Different operators can have different eigenvectors, but the eigenvector/operator relation
depends only on the operator and vectors in question, and not on the particular basis in which
they are expressed; the eigenvector/operator relation is, that is to say, invariant under change of
basis. A Hermitean operator is an operator which has the property that there is an orthonormal
basis consisting of its eigenvectors and those eigenvalues are all real.

A Hilbert space, finally, is a vector space on which an inner product is defined, and which is
complete, i.e., which is such that any Cauchy sequence of vectors in the space converges to a
vector in the space. All finite-dimensional inner product spaces are complete, and | will restrict
myself to these. The infinite case involves some complications that are not fruitfully entered into
at this stage.

3. Quantum Mechanics



Four basic principles of quantum mechanics are:

(3.1)

(3.2)

(3.3)

(3.4)

Physical States. Every physical system is associated with a Hilbert Space, every unit vector in
the space corresponds to a possible pure state of the system, and every possible pure state,

to some vector in the space. !

Physical Quantities. Hermitian operators in the Hilbert space associated with a system
represent physical quantities, and their eigenvalues represent the possible results of
measurements of those quantities.

There is an operator, called the Hamiltonian, that plays a special role in quantum theory
because the dynamics of a system can be conveniently formulated by tracking its evolution.

The Hamiltonian - written H, or H - stands for the total energy of the system. Its
eigenvalues are the possible results that might be obtained in measurements of total
energy. It is given by summing over the kinetic and potential energies of the system’s
components.

Composition. The Hilbert space associated with a complex system is the tensor product of
those associated with the simple systems (in the standard, non-relativistic, theory: the
individual particles) of which it is composed.

Dynamics.

a. Contexts of type 1: Given the state of a system at ¢ and the forces and constraints to
which it is subject, there is an equation, ‘Schrédinger’s equation’, that gives the state at
any other time Ulv:) — \vt1>,[§] The important properties of U for our purposes are that
it is deterministic, which is to say that it takes the state of a system at one time into a
unigue state at any other, it is unitary, which means that it is an automorphism of the
Hilbert space on which it acts (i.e., a mapping of that space onto itself that preserves
the linear space structure and inner product), and it is linear, which is to say that if it
takes a state |A) onto the state |A’), and it takes the state | B) onto the state |B’), then

it takes any state of the form a|A) + B|B) onto the state a|A’) + 8|B’).

b. Contexts of type 2 (“Measurement Contexts”):[2] Carrying out a “measurement” of an
observable B on a system in a state |A) has the effect of collapsing the system into a B-
eigenstate corresponding to the eigenvalue observed. This is known as the Collapse
Postulate. Which particular B-eigenstate it collapses into is a matter of probability, and
the probabilities are given by a rule known as Born’s Rule:

Pr(b;) = [(A| B=b;)|"

There are two important points to note about these two kinds of contexts:

The distinction between contexts of type 1 and 2 remains to be made out in quantum
mechanical terms; nobody has managed to say in a completely satisfactory way, in the terms
provided by the theory, which contexts are measurement contexts, and

Even if the distinction is made out, it is an open interpretive question whether there are
contexts of type 2; i.e., it is an open interpretive question whether there are any contexts in
which systems are governed by a dynamical rule other than Schrodinger’s equation.

4. Structures on Hilbert Space
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| remarked above that in the same way that all the information we have about the relations
between locations in a city is embodied in the spatial relations between the points on a map
which represent them, all of the information that we have about the internal relations among
(and between) states and quantities in quantum mechanics is embodied in the mathematical
relations among the vectors and operators which represent them.[19] From a mathematical point
of view, what really distinguishes quantum mechanics from its classical predecessors is that states
and quantities have a richer structure; they form families with a more interesting network of
relations among their members.

All of the physically consequential features of the behaviors of quantum mechanical systems are
conseguences of mathematical properties of those relations, and the most important of them are
easily summarized:

(P1) Any way of adding vectors in a Hilbert space or multiplying them by scalars will yield a
vector that is also in the space. In the case that the vector is normalized, it will, from (3.1),
represent a possible state of the system, and in the event that it is the sum of a pair of
eigenvectors of an observable B with distinct eigenvalues, it will not itself be an
eigenvector of B, but will be associated, from (3.4b), with a set of probabilities for
showing one or another result in B-measurements.

(P2) For any Hermitian operator on a Hilbert space, there are others, on the same space, with
which it doesn’t share a full set of eigenvectors; indeed, it is easy to show that there are
other such operators with which it has no eigenvectors in common.

If we make a couple of additional interpretive assumptions, we can say more. Assume, for
instance, that

(4.1) Every Hermitian operator on the Hilbert space associated with a system represents a distinct
observable, and (hence) every normalized vector, a distinct state, and

(4.2) A system has a value for observable A if, and only if, the vector representing its state is an
eigenstate of the A-operator. The value it has, in such a case, is just the eigenvalue
associated with that eigenstate.[11]

It follows from (P2), by (3.1), that no quantum mechanical state is an eigenstate of all observables
(and indeed that there are observables which have no eigenstates in common), and so, by (3.2),
that no quantum mechanical system ever has simultaneous values for all of the quantities
pertaining to it (and indeed that there are pairs of quantities to which no state assigns
simultaneous values).

There are Hermitian operators on the tensor product H; ® Hs of a pair of Hilbert spaces H; and
H, ... In the event that H; and H» are the state spaces of systems S1 and 52, H; ® Hs is the
state-space of the complex system (S1 + §2). It follows from this by (4.1) that there are
observables pertaining to (S1 4 S2) whose values are not determined by the values of
observables pertaining to the two individually.

These are all straightforward consequences of taking vectors and operators in Hilbert space to
represent, respectively, states and observables, and applying Born’s Rule (and later (4.1) and
(4.2)), to give empirical meaning to state assignments. That much is perfectly well understood;
the real difficulty in understanding quantum mechanics lies in coming to grips with their
implications — physical, metaphysical, and epistemological.
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Anyone trying to come to an understanding about what quantum mechanics says about the
world has to grapple with one remaining fact. This problem is not an issue with Hilbert spaces,
but of the dynamics - the rules that describe the trajectories that systems follow through the
space. From a physical point of view, it is far more worrisome than anything discussed to this
point. It not only presents difficulties to someone trying to provide an interpretation of the theory,
but also seems to point to a logical inconsistency in the theory’s foundations.

Suppose that we have a system S and a device S* which measures an observable 4 on S with
values {a1, as, as, ... }. Then there is some state of S* (the ‘ground state’), and some observable
B with values {b1, b2, bs, . .. } pertaining to S* (its ‘pointer observable’, so called because it is
whatever plays the role of the pointer on a dial on the front of a schematic measuring instrument
in registering the result of the experiment), which are such that, if S* is started in its ground state
and interacts in an appropriate way with S, and if the value of A immediately before the
interaction is a1, then B’s value immediately thereafter is b;. If, however, A’s value immediately
before the interaction is aq, then B’s value afterwards is by; if the value of A immediately before
the interaction is as, then B’s value immediately after is b3, and so on. That is just what it means
to say that S* measures A. So, if we represent the joint, partial state of S and S™* (just the part of
it which specifies the value of [A on S & B on S*], the observable whose values correspond to
joint assignments of values to the measured observable on S and the pointer observable on %)
by the vector |[A = ai)s\B = bz->s*, and let “—” stand in for the dynamical description of the

interaction between the two, to say that S* is a measuring instrument for A is to say that the
dynamical laws entail that,

|A = a1),|B = ground state),. — |A = a1),|B = b1),.
|A = a2),|B = ground state),. — |A = a2),|B = b2) .
|A = a3),|B = ground state),. — |A = a3),|B = b3) .

and so on.[12]

Intuitively, S* is a measuring instrument for an observable A just in case there is some observable
feature of S* (it doesn’t matter what, just something whose values can be ascertained by looking
at the device), which is correlated with the A-values of systems fed into it in such a way that we
can read those values off of S*’s observable state after the interaction. In philosophical parlance,
S* is a measuring instrument for A just in case there is some observable feature of S* which
tracks or indicates the A-values of systems with which it interacts in an appropriate way.

Now, it follows from (3.1), above, that there are states of S (too many to count) which are not
eigenstates of A, and if we consider what Schroédinger’s equation tells us about the joint
evolution of S and S* when S is started out in one of these, we find that the state of the pair
after interaction is a superposition of eigenstates of [A on S & B on S*]. It doesn’t matter what
observable on S is being measured, and it doesn’t matter what particular superposition S starts
out in; when it is fed into a measuring instrument for that observable, if the interaction is correctly
described by Schrodinger’s equation, it follows just from the linearity of the U in that equation,
the operator that effects the transformation from the earlier to the later state of the pair, that the
joint state of S and the apparatus after the interaction is a superposition of eigenstates of this
observable on the joint system.

Suppose, for example, that we start S* in its ground state, and S in the state
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1 1
_|A = a'1>s + _2|A = a'2>s

V2 V2

It is a consequence of the rules for obtaining the state-space of the composite system that the
combined state of the pair is

1 1
——|A = a,1),|B = ground state) . + —|A = a),|B = ground state)
\/5‘ 1), ) ﬂ' )l

and it follows from the fact that S™* is a measuring instrument for 4, and the linearity of U that
their combined state afterinteraction, is

s*

1 1
—|A = a >3|B = bl>s* + —|A = 0,2>8‘B = b2>
V2 : V2

This, however, is inconsistent with the dynamical rule for contexts of type 2, for the dynamical
rule for contexts of type 2 (and if there are any such contexts, thisis one) entails that the state of
the pair after interaction is either

|A = a1>s|B = by)

S*
or

|A = a’2>s|B = b2>s*

Indeed, it entails that there is a precise probability of % that it will end up in the former, and a
probability of % that it will end up in the latter.

We can try to restore logical consistency by giving up the dynamical rule for contexts of type 2 (or,
what amounts to the same thing, by denying that there are any such contexts), but then we have
the problem of consistency with experience. For it was no mere blunder that that rule was
included in the theory; we know what a system looks like when it is in an eigenstate of a given
observable, and we know from looking that the measuring apparatus after measurement is in an
eigenstate of the pointer observable. And so we know from the outset that if a theory tells us
something else about the post-measurement states of measuring apparatuses, whatever that
something else is, it is wrong.

That, in a nutshell, is the Measurement Problem in quantum mechanics; any interpretation of the
theory, any detailed story about what the world is like according to quantum mechanics, and in
particular those bits of the world in which measurements are going on, has to grapple with it.

Loose Ends

Mixed states are weighted sums of pure states, and they can be used to represent the states of
ensembles whose components are in different pure states, or states of individual systems about
which we have only partial knowledge. In the first case, the weight attached to a given pure state
reflects the size of the component of the ensemble which is in that state (and hence the objective
probability that an arbitrary member of the ensemble is); in the second case, they reflect the
epistemic probability that the system in question to which the state is assigned is in that state.



If we don’t want to lose the distinction between pure and mixed states, we need a way of
representing the weighted sum of a set of pure states (equivalently, of the probability functions
associated with them) that is different from adding the (suitably weighted) vectors that represent
them, and that means that we need either an alternative way of representing mixed states, or a
uniform way of representing both pure and mixed states that preserves the distinction between
them. There is a kind of operator in Hilbert spaces, called a density operator, that serves well in
the latter capacity, and it turns out not to be hard to restate everything that has been said about
state vectors in terms of density operators. So, even though it is common to speak as though pure
states are represented by vectors, the official rule is that states - pure and mixed, alike - are
represented in guantum mechanics by density operators.

Although mixed states can, as | said, be used to represent our ignorance of the states of systems
that are actually in one or another pure state, and although this has seemed to many to be an
adeqguate way of interpreting mixtures in classical contexts, there are serious obstacles to applying
it generally to quantum mechanical mixtures. These are left for detailed discussion in the other
entries on quantum mechanics in the Encyclopedia.

Everything that has been said about observables, strictly speaking, applies only to the case in
which the values of the observable form a discrete set; the mathematical niceties that are needed
to generalize it to the case of continuous observables are complicated, and raise problems of a
more technical nature. These, too, are best left for detailed discussion.

This should be all the initial preparation one needs to approach the philosophical discussion of
guantum mechanics, but it is only a first step. The more one learns about the relationships among
and between vectors and operators in Hilbert space, about how the spaces of simple systems
relate to those of complex ones, and about the equation which describes how state-vectors move
through the space, the better will be one’s appreciation of both the nature and the difficulty of
the problems associated with the theory. The funny backwards thing about quantum mechanics,
the thing that makes it endlessly absorbing to a philosopher, is that the more one learns, the
harder the problems get.
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